238 research outputs found

    Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection

    Get PDF
    The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing

    Looking for a pattern: An MEG study on the abstract mismatch negativity in musicians and nonmusicians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mismatch negativity (MMN) is an early component of event-related potentials/fields, which can be observed in response to violations of regularities in sound sequences. The MMN can be elicited by simple feature (e.g. pitch) deviations in standard oddball paradigms as well as by violations of more complex sequential patterns. By means of magnetoencephalography (MEG) we investigated if a pattern MMN could be elicited based on global rather than local probabilities and if the underlying ability to integrate long sequences of tones is enhanced in musicians compared to nonmusicians.</p> <p>Results</p> <p>A pattern MMN was observed in response to violations of a predominant sequential pattern (AAAB) within a standard oddball tone sequence consisting of only two different tones. This pattern MMN was elicited even though the probability of pattern deviants in the sequence was as high as 0.5. Musicians showed more leftward-lateralized pattern MMN responses, which might be due to a stronger specialization of the ability to integrate information in a sequence of tones over a long time range.</p> <p>Conclusion</p> <p>The results indicate that auditory grouping and the probability distribution of possible patterns within a sequence influence the expectations about upcoming tones, and that the MMN might also be based on global statistical knowledge instead of a local memory trace. The results also show that auditory grouping based on sequential regularities can occur at a much slower presentation rate than previously presumed, and that probability distributions of possible patterns should be taken into account even for the construction of simple oddball sequences.</p

    Asymmetric lateral inhibitory neural activity in the auditory system: a magnetoencephalographic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decrements of auditory evoked responses elicited by repeatedly presented sounds with similar frequencies have been well investigated by means of electroencephalography and magnetoencephalography (MEG). However the possible inhibitory interactions between different neuronal populations remains poorly understood. In the present study, we investigated the effect of proceeding notch-filtered noises (NFNs) with different frequency spectra on a following test tone using MEG.</p> <p>Results</p> <p>Three-second exposure to the NFNs resulted in significantly different N1m responses to a 1000 Hz test tone presented 500 ms after the offset of the NFNs. The NFN with a lower spectral edge closest to the test tone mostly decreased the N1m amplitude.</p> <p>Conclusion</p> <p>The decrement of the N1m component after exposure to the NFNs could be explained partly in terms of lateral inhibition. The results demonstrated that the amplitude of the N1m was more effectively influenced by inhibitory lateral connections originating from neurons corresponding to lower rather than higher frequencies. We interpret this effect of asymmetric lateral inhibition in the auditory system as an important contribution to reduce the asymmetric neural activity profiles originating from the cochlea.</p

    Bottom-up driven involuntary attention modulates auditory signal in noise processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Auditory evoked responses can be modulated by both the sequencing and the signal-to-noise ratio of auditory stimuli. Constant sequencing as well as intense masking sounds basically lead to N1m response amplitude reduction. However, the interaction between these two factors has not been investigated so far. Here, we presented subjects tone stimuli of different frequencies, which were either concatenated in blocks of constant frequency or in blocks of randomly changing frequencies. The tones were presented either in silence or together with broad-band noises of varying levels.</p> <p>Results</p> <p>In silence, tones presented with random sequencing elicited a larger N1m response than tones presented with constant sequencing. With increasing noise level, this difference decreased and even vanished in the condition where noise intensity exceeded the tone intensity by 10 dB. Furthermore, under noisy conditions, the N1m latency was shorter in the constant sequencing condition compared to the random sequencing condition.</p> <p>Conclusions</p> <p>Besides the well-known neural habituation mechanisms, bottom-up driven attention plays an important role during auditory processing in noisy environments. This bottom-up driven attention would allow us to track a certain auditory signal in noisy situations without voluntarily paying attention to the auditory modality.</p

    Different Modes of Pitch Perception and Learning-Induced Neuronal Plasticity of the Human Auditory Cortex

    Get PDF
    We designed a melody perception experiment involving eight harmonic complex tones of missing fundamental frequencies (hidden auditory object) to study the short-term neuronal plasticity of the auditory cortex. In this experiment, the fundamental frequencies of the complex tones followed the beginning of the virtual melody of the tune “Frère Jacques”. The harmonics of the complex tones were chosen so that the spectral melody had an inverse contour when compared with the virtual one. Evoked magnetic fields were recorded contralaterally to the ear of stimulation from both hemispheres. After a base line measurement, the subjects were exposed repeatedly to the experimental stimuli for 1 hour a day. All subjects reported a sudden change in the perceived melody, indicating possible reorganization of the cortical processes involved in the virtual pitch formation. After this switch in perception, a second measurement was performed. Cortical sources of the evoked gamma-band activity were significantly stronger and located more medially after a switch in perception. Independent Component Analysis revealed enhanced synchronization in the gamma-band frequency range. Comparing the gamma-band activation of both hemispheres, no laterality effects were observed. The results indicate that the primary auditory cortices are involved in the process of virtual pitch perception and that their function is modifiable by laboratory manipulation

    Processing of Complex Auditory Patterns in Musicians and Nonmusicians

    Get PDF
    In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain

    Left hemispheric dominance during auditory processing in a noisy environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG).</p> <p>Results</p> <p>We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking.</p> <p>Conclusion</p> <p>The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.</p

    Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to auditory experience, musicians have better auditory expertise than non-musicians. An increased neocortical activity during auditory oddball stimulation was observed in different studies for musicians and for non-musicians after discrimination training. This suggests a modification of synaptic strength among simultaneously active neurons due to the training. We used amplitude-modulated tones (AM) presented in an oddball sequence and manipulated their carrier or modulation frequencies. We investigated non-musicians in order to see if behavioral discrimination training could modify the neocortical activity generated by change detection of AM tone attributes (carrier or modulation frequency). Cortical evoked responses like N1 and mismatch negativity (MMN) triggered by sound changes were recorded by a whole head magnetoencephalographic system (MEG). We investigated (i) how the auditory cortex reacts to pitch difference (in carrier frequency) and changes in temporal features (modulation frequency) of AM tones and (ii) how discrimination training modulates the neuronal activity reflecting the transient auditory responses generated in the auditory cortex.</p> <p>Results</p> <p>The results showed that, additionally to an improvement of the behavioral discrimination performance, discrimination training of carrier frequency changes significantly modulates the MMN and N1 response amplitudes after the training. This process was accompanied by an attention switch to the deviant stimulus after the training procedure identified by the occurrence of a P3a component. In contrast, the training in discrimination of modulation frequency was not sufficient to improve the behavioral discrimination performance and to alternate the cortical response (MMN) to the modulation frequency change. The N1 amplitude, however, showed significant increase after and one week after the training. Similar to the training in carrier frequency discrimination, a long lasting involuntary attention to the deviant stimulus was observed.</p> <p>Conclusion</p> <p>We found that discrimination training differentially modulates the cortical responses to pitch changes and to envelope fluctuation changes of AM tones. This suggests that discrimination between AM tones requires additional neuronal mechanisms compared to discrimination process between pure tones. After the training, the subjects demonstrated an involuntary attention switch to the deviant stimulus (represented by the P3a-component in the MEG) even though attention was not prerequisite.</p

    Combining Transcranial Direct Current Stimulation and Tailor-Made Notched Music Training to Decrease Tinnitus-Related Distress – A Pilot Study

    Get PDF
    The central auditory system has a crucial role in tinnitus generation and maintenance. Curative treatments for tinnitus do not yet exist. However, recent attempts in the therapeutic application of both acoustic stimulation/training procedures and electric/magnetic brain stimulation techniques have yielded promising results. Here, for the first time we combined tailor-made notched music training (TMNMT) with transcranial direct current stimulation (tDCS) in an effort to modulate TMNMT efficacy in the treatment of 32 patients with tonal tinnitus and without severe hearing loss. TMNMT is characterized by regular listening to so-called notched music, which is generated by digitally removing the frequency band of one octave width centered at the individual tinnitus frequency. TMNMT was applied for 10 subsequent days (2.5 hours of daily treatment). During the initial 5 days of treatment and the initial 30 minutes of TMNMT sessions, tDCS (current strength: 2 mA; anodal (N = 10) vs. cathodal (N = 11) vs. sham (N = 11) groups) was applied simultaneously. The active electrode was placed on the head surface over left auditory cortex; the reference electrode was put over right supra-orbital cortex. To evaluate treatment outcome, tinnitus-related distress and perceived tinnitus loudness were assessed using standardized tinnitus questionnaires and a visual analogue scale. The results showed a significant treatment effect reflected in the Tinnitus Handicap Questionnaire that was largest after 5 days of treatment. This effect remained significant at the end of follow-up 31 days after treatment cessation. Crucially, tDCS did not significantly modulate treatment efficacy - it did not make a difference whether anodal, cathodal, or sham tDCS was applied. Possible explanations for the findings and functional modifications of the experimental design for future studies (e.g. the selection of control conditions) are discussed

    Effects of musical training and event probabilities on encoding of complex tone patterns

    Full text link
    Background: The human auditory cortex automatically encodes acoustic input from the environment and differentiates regular sound patterns from deviant ones in order to identify important, irregular events. The Mismatch Negativity (MMN) response is a neuronal marker for the detection of sounds that are unexpected, based on the encoded regularities. It is also elicited by violations of more complex regularities and musical expertise has been shown to have an effect on the processing of complex regularities. Using magnetoencephalography (MEG), we investigated the MMN response to salient or less salient deviants by varying the standard probability (70%, 50% and 35%) of a pattern oddball paradigm. To study the effects of musical expertise in the encoding of the patterns, we compared the responses of a group of non-musicians to those of musicians. Results: We observed significant MMN in all conditions, including the least salient condition (35% standards), in response to violations of the predominant tone pattern for both groups. The amplitude of MMN from the right hemisphere was influenced by the standard probability. This effect was modulated by long-term musical training: standard probability changes influenced MMN amplitude in the group of non-musicians only. Conclusion: This study indicates that pattern violations are detected automatically, even if they are of very low salience, both in non-musicians and musicians, with salience having a stronger impact on processing in the right hemisphere of non-musicians. Long-term musical training influences this encoding, in that non-musicians benefit to a greater extent from a good signal-to-noise ratio (i.e. high probability of the standard pattern), while musicians are less dependent on the salience of an acoustic environment.<br
    • …
    corecore